MEX Vocabulary: A Light-Weight Interchange Format for Machine Learning Experiments

MEX Vocabulary: A Light-Weight Interchange Format for Machine Learning Experiments

Issues Source Code Download

Over the last decades many machine learning experiments have been published, giving benefit to the scientific progress. In order to compare machine-learning experiment results with each other and collaborate positively, they need to be performed thoroughly on the same computing environment, using the same sample datasets and algorithm configurations. Besides this, practical experience shows that scientists and engineers tend to have large output data in their experiments, which is both difficult to analyze and archive properly without provenance metadata. However, the Linked Data community still misses a light-weight specification for interchanging machine-learning metadata over different architectures to achieve a higher level of interoperability. MEX provides a prompt method to describe experiments with a special focus on data provenance and fulfills the requirements for a long-term maintenance

Publications

by (Editors: ) [BibTex of ]

News

DBpedia Tutorial @ Knowledge Graph Conference 2021 ( 2021-04-09T13:20:50+02:00 by Julia Holze)

2021-04-09T13:20:50+02:00 by Julia Holze

On May 4, 2021 we will organize a tutorial at the Knowledge Graph Conference (KGC) 2021. Read more about "DBpedia Tutorial @ Knowledge Graph Conference 2021"

DBpedia @ Google Summer of Code program 2021 ( 2021-03-15T09:41:22+01:00 by Julia Holze)

2021-03-15T09:41:22+01:00 by Julia Holze

DBpedia, one of InfAI’s community projects, will participate in the Google Summer of Code (GSoC) program for the 10th time. The GsoC program has the goal to bring students from all over the globe into open source software development. Read more about "DBpedia @ Google Summer of Code program 2021"

DBpedia’s New Website ( 2021-01-28T12:42:40+01:00 by Julia Holze)

2021-01-28T12:42:40+01:00 by Julia Holze

We are proud to announce the completion of the new DBpedia website. Read more about "DBpedia’s New Website"

SANSA 0.7.1 (Semantic Analytics Stack) Released ( 2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann)

2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann

We are happy to announce SANSA 0.7.1 – the seventh release of the Scalable Semantic Analytics Stack. SANSA employs distributed computing via Apache Spark and Flink in order to allow scalable machine learning, inference and querying capabilities for large knowledge graphs. Read more about "SANSA 0.7.1 (Semantic Analytics Stack) Released"

More Complete Resultset Retrieval from Large Heterogeneous RDF Sources ( 2019-12-05T15:46:09+01:00 Andre Valdestilhas)

2019-12-05T15:46:09+01:00 Andre Valdestilhas

Over recent years, the Web of Data has grown significantly. Various interfaces such as LOD Stats, LOD Laundromat and SPARQL endpoints provide access to hundreds of thousands of RDF datasets, representing billions of facts. Read more about "More Complete Resultset Retrieval from Large Heterogeneous RDF Sources"