STREAM: Semantische Repräsentation, Vernetzung und Kuratierung von qualitätsgesicherten Materialdaten.

Förderkennzeichen: 16QK11C

Die Materialwissenschaften stehen vor der großen Herausforderung, umfangreich vorliegende und neu hinzukommende Forschungsdaten qualitativ zu vernetzen und zugleich die Reproduzierbarkeit der Daten sicherzustellen. Darüber hinaus stellen die Bewertung, Bestandspflege und Speicherung, vor allem aber die Nutzbarmachung dezentral gespeicherter Daten im Zusammenhang mit der fortschreitenden Digitalisierung und dem daraus resultierenden Umgang mit neuem Wissen bisher nicht gekannte Anforderungen für die Materialwissenschaftler dar.

Mit dem BMBF-geförderten Projekt STREAM („Semantische Repräsentation, Vernetzung und Kuratierung von qualitätsgesicherten Materialdaten“) widmen sich die Projektpartner dem Problem der Qualitätsbewertung und Kuratierung wissenschaftlicher Daten. Hierzu werden neue Methoden und Denkansätze entwickelt, um im Anschluss an das Projekt der Wissenschaftler-Gemeinschaft Lösungen zum Bewältigen der neuen Herausforderungen zur Verfügung stellen zu können. Hierbei gilt es in Bezug auf Materialdaten zuerst, zeitnah Kurationskriterien zu formulieren, auf deren Basis die Sicherstellung der Vollständigkeit von Datensätzen, der Kohärenz und Konsistenz von Material- und Kontextdaten sowie auf die portalübergreifende Auffind- und Nutzbarkeit von Daten realisierbar wird.

STREAM steht zu allererst jedoch vor der großen Herausforderung, ein gemeinsames Verständnis zur Struktur von Material- und Kontextdaten zu etablieren, soll heißen, eine agile Ontologiemodellierung einzuführen, welche zu einem abgestimmten Repräsentationsschema für Materialdaten aus Computersimulation und Experiment und entsprechenden Kontextinformationen führt. Sobald dieses gemeinsame Verständnis der Materialrepräsentation vorhanden ist, können im nächsten Schritt Material- und Kontextdaten durch eine gemeinsame Ontologie abgebildet werden. Diese sind somit auf ihrer Basis vollständig digitalisiert und über ihrer Eigenschaften beschrieben. Die Ontologie ermöglicht dabei, die Struktur von Materialdaten sowohl aus Computersimulationen als auch aus Experimenten sinnvoll mit den jeweiligen Kontextinformationen zu erfassen. Die erfassten und digitalisierten Daten können in einem darauffolgenden Prozess kontinuierlich einer Bewertung unterzogen werden. Hierzu werden standardisierte Methoden zum Testen und für die Datenanalytik mittels maschinellen Lernens eingeführt. Die digitalisierten Daten, das heißt, sowohl die Materialdaten als auch die Kontextinformationen, werden anderen Materialwissenschaftlerinnen und –wissenschaftlern über neu zu entwickelnde Plattformen zugänglich gemacht. Durch diesen Schritt kann die Reproduzierbarkeit bzw. die Validität von Experimenten gefördert, neue Ergebnisse direkt verglichen und Daten für neue Experimente wiederverwendet werden.

Project Team

Publications

by (Editors: ) [BibTex of ]

News

DBpedia Tutorial @ Knowledge Graph Conference 2021 ( 2021-04-09T13:20:50+02:00 by Julia Holze)

2021-04-09T13:20:50+02:00 by Julia Holze

On May 4, 2021 we will organize a tutorial at the Knowledge Graph Conference (KGC) 2021. Read more about "DBpedia Tutorial @ Knowledge Graph Conference 2021"

DBpedia @ Google Summer of Code program 2021 ( 2021-03-15T09:41:22+01:00 by Julia Holze)

2021-03-15T09:41:22+01:00 by Julia Holze

DBpedia, one of InfAI’s community projects, will participate in the Google Summer of Code (GSoC) program for the 10th time. The GsoC program has the goal to bring students from all over the globe into open source software development. Read more about "DBpedia @ Google Summer of Code program 2021"

DBpedia’s New Website ( 2021-01-28T12:42:40+01:00 by Julia Holze)

2021-01-28T12:42:40+01:00 by Julia Holze

We are proud to announce the completion of the new DBpedia website. Read more about "DBpedia’s New Website"

SANSA 0.7.1 (Semantic Analytics Stack) Released ( 2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann)

2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann

We are happy to announce SANSA 0.7.1 – the seventh release of the Scalable Semantic Analytics Stack. SANSA employs distributed computing via Apache Spark and Flink in order to allow scalable machine learning, inference and querying capabilities for large knowledge graphs. Read more about "SANSA 0.7.1 (Semantic Analytics Stack) Released"

More Complete Resultset Retrieval from Large Heterogeneous RDF Sources ( 2019-12-05T15:46:09+01:00 Andre Valdestilhas)

2019-12-05T15:46:09+01:00 Andre Valdestilhas

Over recent years, the Web of Data has grown significantly. Various interfaces such as LOD Stats, LOD Laundromat and SPARQL endpoints provide access to hundreds of thousands of RDF datasets, representing billions of facts. Read more about "More Complete Resultset Retrieval from Large Heterogeneous RDF Sources"