RDFSlice: Large-scale RDF Dataset Slicing

  • screenshot

In the last years an increasing number of structured data was published on the Web as Linked Open Data (LOD).Despite recent advances, consuming and using Linked Open Data within an organization is still a substantial challenge. Many of the LOD datasets are quite large and despite progress in RDF data management their loading and querying within a triple store is extremely time-consuming and resource-demanding. To overcome this consumption obstacle, we propose a process inspired by the classical Extract-Transform-Load (ETL) paradigm, RDF dataset slicing.

Download Homepage Source Code

RDFSlicing focuses on the selection and extraction. It devises a fragment of SPARQL dubbed SliceSPARQL, which enables the selection of well-defined slices of datasets fulfilling typical information needs. SliceSPARQL supports graph patterns for which each connected subgraph pattern involves a maximum of one variable or IRI in its join conditions. This restriction guarantees the efficient processing of the query against a sequential dataset dump stream. As a result dataset slices can be generated an order of magnitude faster than by using the conventional approach of loading the whole dataset into a triple store and retrieving the slice by executing the query against the triple store's SPARQL endpoint.

Project Team

Publications

by (Editors: ) [BibTex of ]

News

SANSA 0.7.1 (Semantic Analytics Stack) Released ( 2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann)

2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann

We are happy to announce SANSA 0.7.1 – the seventh release of the Scalable Semantic Analytics Stack. SANSA employs distributed computing via Apache Spark and Flink in order to allow scalable machine learning, inference and querying capabilities for large knowledge graphs. Read more about "SANSA 0.7.1 (Semantic Analytics Stack) Released"

More Complete Resultset Retrieval from Large Heterogeneous RDF Sources ( 2019-12-05T15:46:09+01:00 Andre Valdestilhas)

2019-12-05T15:46:09+01:00 Andre Valdestilhas

Over recent years, the Web of Data has grown significantly. Various interfaces such as LOD Stats, LOD Laundromat and SPARQL endpoints provide access to hundreds of thousands of RDF datasets, representing billions of facts. Read more about "More Complete Resultset Retrieval from Large Heterogeneous RDF Sources"

DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released ( 2019-09-24T22:41:46+02:00 by Simon Bin)

2019-09-24T22:41:46+02:00 by Simon Bin

Dear all, The Smart Data Analytics group [1] and the E.T.-db-MOLE sub-group located at the InfAI Leipzig [2] is happy to announce DL-Learner 1.4. DL-Learner is a framework containing algorithms for supervised machine learning in RDF and OWL. Read more about "DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released"

DBpedia Day @ SEMANTiCS 2019 ( 2019-08-01T10:35:05+02:00 Sandra Bartsch)

2019-08-01T10:35:05+02:00 Sandra Bartsch

 We are happy to announce that SEMANTiCS 2019 will host the 14th DBpedia Community Meeting at the last day of the conference on September 12, 2019. Read more about "DBpedia Day @ SEMANTiCS 2019"

LDK conference @ University of Leipzig ( 2019-03-22T09:21:41+01:00 by Julia Holze)

2019-03-22T09:21:41+01:00 by Julia Holze

With the advent of digital technologies, an ever-increasing amount of language data is now available across various application areas and industry sectors, thus making language data more and more valuable. Read more about "LDK conference @ University of Leipzig"