CubeViz: The RDF DataCube Browser.

  • screenshot
  • screenshot
  • screenshot

CubeViz is a facetted browser for statistical data utilizing the RDF Data Cube vocabulary which is the state-of-the-art in representing statistical data in RDF. This vocabulary is compatible with SDMX and increasingly being adopted. Based on the vocabulary and the encoded Data Cube, CubeViz is generating a facetted browsing widget that can be used to filter interactively observations to be visualized in charts. Based on the selected structure, CubeViz offer beneficiary chart types and options which can be selected by users.

Demo Source Code Download Issues Wiki

In order to hide the complexity of the RDF Data Cube vocabulary from users and to facilitate the browsing and exploration of DataCubes we developed the RDF DataCube browser CubeViz. CubeViz can be divided into two parts, both developed as an extension of OntoWiki:

  1. Faceted data selection component, which queries the structural part of a selected RDF graph containing DataCube resources.
  2. Chart visualization component, which queries observations (selected by the faceted selection component) and visualize them with suitable charts.

CubeViz renders facets according to the DataCube vocabulary to select data on the first component, using SPARQL as the query language. Currently, the following facets are available:

  1. Selection of a DataCube DataSet
  2. Selection of a DataCube Slice
  3. Selection of a specific measure and attribute (unit) property encoded in the respective DataCube dataset.
  4. Selection of a set of dimension elements that are part of the dimensions encoded in the respective DataCube data set

Project Team

Publications

by (Editors: ) [BibTex of ]

News

SANSA 0.7.1 (Semantic Analytics Stack) Released ( 2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann)

2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann

We are happy to announce SANSA 0.7.1 – the seventh release of the Scalable Semantic Analytics Stack. SANSA employs distributed computing via Apache Spark and Flink in order to allow scalable machine learning, inference and querying capabilities for large knowledge graphs. Read more about "SANSA 0.7.1 (Semantic Analytics Stack) Released"

More Complete Resultset Retrieval from Large Heterogeneous RDF Sources ( 2019-12-05T15:46:09+01:00 Andre Valdestilhas)

2019-12-05T15:46:09+01:00 Andre Valdestilhas

Over recent years, the Web of Data has grown significantly. Various interfaces such as LOD Stats, LOD Laundromat and SPARQL endpoints provide access to hundreds of thousands of RDF datasets, representing billions of facts. Read more about "More Complete Resultset Retrieval from Large Heterogeneous RDF Sources"

DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released ( 2019-09-24T22:41:46+02:00 by Simon Bin)

2019-09-24T22:41:46+02:00 by Simon Bin

Dear all, The Smart Data Analytics group [1] and the E.T.-db-MOLE sub-group located at the InfAI Leipzig [2] is happy to announce DL-Learner 1.4. DL-Learner is a framework containing algorithms for supervised machine learning in RDF and OWL. Read more about "DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released"

DBpedia Day @ SEMANTiCS 2019 ( 2019-08-01T10:35:05+02:00 Sandra Bartsch)

2019-08-01T10:35:05+02:00 Sandra Bartsch

 We are happy to announce that SEMANTiCS 2019 will host the 14th DBpedia Community Meeting at the last day of the conference on September 12, 2019. Read more about "DBpedia Day @ SEMANTiCS 2019"

LDK conference @ University of Leipzig ( 2019-03-22T09:21:41+01:00 by Julia Holze)

2019-03-22T09:21:41+01:00 by Julia Holze

With the advent of digital technologies, an ever-increasing amount of language data is now available across various application areas and industry sectors, thus making language data more and more valuable. Read more about "LDK conference @ University of Leipzig"