ASSESS: Automatic Self Assessment

The Linked Open Data Cloud is a goldmine for educational applications: First, it contains knowledge of encyclopedic nature on a large number of real-world entities. Moreover, the data being structured ensures that the meaning of the data can be understood by both humans and machines. Finally, the openness of the data and the use of RDF as standard format facilitate the development of applications that can be ported across different domains with ease. However, RDF is still unknown to most members of the target audience of educational applications. Thus, Linked Data has commonly been used for the description or annotation of educational data. Yet, Linked Data has (to the best of our knowledge) never been used as direct source of educational material. With ASSESS, we demonstrate that we can use Linked Data as source for the automatic generation of educational material. By using innovative RDF verbalization and entity summarization technology, we bridge between natural language and RDF. We then use RDF data directly to generate quizzes which encompass questions of different types on user-defined domains of interest. By these means, we enable learners to generate self-assessment tests on domains of interest. Teachers are supported through the automatic generation and evaluation of tests. Our evaluation shows that ASSESS scales on very large knowledge bases such as DBpedia.

Download Demo

The Linked Open Data Cloud is a goldmine for educational applications: First, it contains knowledge of encyclopedic nature on a large number of real-world entities. Moreover, the data being structured ensures that the meaning of the data can be understood by both humans and machines. Finally, the openness of the data and the use of RDF as standard format facilitate the development of applications that can be ported across different domains with ease. However, RDF is still unknown to most members of the target audience of educational applications. Thus, Linked Data has commonly been used for the description or annotation of educational data. Yet, Linked Data has (to the best of our knowledge) never been used as direct source of educational material. With ASSESS, we demonstrate that we can use Linked Data as source for the automatic generation of educational material. By using innovative RDF verbalization and entity summarization technology, we bridge between natural language and RDF. We then use RDF data directly to generate quizzes which encompass questions of different types on user-defined domains of interest. By these means, we enable learners to generate self-assessment tests on domains of interest. Teachers are supported through the automatic generation and evaluation of tests. Our evaluation shows that ASSESS scales on very large knowledge bases such as DBpedia.

Project Team

Publications

by (Editors: ) [BibTex of ]

News

ESWC 2017 accepted two Demo Papers by AKSW members ( 2017-04-19T10:19:43+02:00 Christopher Schulz)

2017-04-19T10:19:43+02:00 Christopher Schulz

Hello Community! The 14th ESWC, which takes place from May 28th to June 1st 2017 in Portoroz, Slovenia, accepted two demos to be presented at the conference. Read more about them in the following:                                                                         1. Read more about "ESWC 2017 accepted two Demo Papers by AKSW members"

AKSW Colloquium, 10.04.2017, GeoSPARQL on geospatial databases ( 2017-04-07T10:43:55+02:00 by Dr. Matthias Wauer)

2017-04-07T10:43:55+02:00 by Dr. Matthias Wauer

At the AKSW Colloquium, on Monday 10th of April 2017, 3 PM, Matthias Wauer will discuss a paper titled “Ontop of Geospatial Databases“. Read more about "AKSW Colloquium, 10.04.2017, GeoSPARQL on geospatial databases"

AKSW Colloquium, 03.04.2017, RDF Rule Mining ( 2017-03-31T13:39:28+02:00 TommasoSoru)

2017-03-31T13:39:28+02:00 TommasoSoru

At the AKSW Colloquium, on Monday 3rd of April 2017, 3 PM, Tommaso Soru will present the state of his ongoing research titled “Efficient Rule Mining on RDF Data”, where he will introduce Horn Concerto, a novel scalable SPARQL-based approach … Continue reading → Read more about "AKSW Colloquium, 03.04.2017, RDF Rule Mining"

AKSW Colloquium, 27.03.2017, PPO & PPM 2.0: Extending the privacy preference framework to provide finer-grained access control for the Web of Data ( 2017-03-27T10:13:08+02:00 by Marvin Frommhold)

2017-03-27T10:13:08+02:00 by Marvin Frommhold

In the upcoming Colloquium, March the 27th at 3 PM Marvin Frommhold will discuss the paper “PPO & PPM 2.0: Extending the Privacy Preference Framework to provide finer-grained access control for the Web of Data” by Owen Sacco and John G. Read more about "AKSW Colloquium, 27.03.2017, PPO & PPM 2.0: Extending the privacy preference framework to provide finer-grained access control for the Web of Data"

DBpedia @ Google Summer of Code – GSoC 2017 ( 2017-03-13T11:12:50+01:00 Christopher Schulz)

2017-03-13T11:12:50+01:00 Christopher Schulz

DBpedia, one of InfAI’s community projects, will be part of the 5th Google Summer of Code program. The GsoC has the goal to bring students from all over the globe into open source software development. Read more about "DBpedia @ Google Summer of Code – GSoC 2017"