Properties of Neural SPARQL Machines

  1. Properties
  2. History
  3. Source
hookline
  • Translating natural language for question answering.
http://aksw.org/schema/publicationTag
  • nspm
content
  • In the last years, the Linked Data Cloud has achieved a size of more than 100 billion facts pertaining to a multitude of domains. However, accessing this information has been significantly challenging for lay users. Approaches to problems such as Question Answering on Linked Data and Link Discovery have notably played a role in increasing information access. These approaches are often based on handcrafted and/or statistical models derived from data observation. Recently, Deep Learning architectures based on Neural Networks called seq2seq have shown to achieve the state-of-the-art results at translating sequences into sequences. In this direction, we propose Neural SPARQL Machines, end-to-end deep architectures to translate any natural language expression into sentences encoding SPARQL queries. Our preliminary results, restricted on selected DBpedia classes, show that Neural SPARQL Machines are a promising approach for Question Answering on Linked Data, as they can deal with known problems such as vocabulary mismatch and perform graph pattern composition.

screenshot
abstract
  • Neural SPARQL Machines translate natural language expressions into sequences encoding SPARQL queries. A generator module builds the training set from manually- or automatically-created templates and a knowledge base. The tasks of entity recognition and query construction are entirely assigned to a LSTM-based recurrent neural network. The support for external word embeddings helps tackling the vocabulary mismatch problem, while curriculum learning is employed to learn graph pattern compositions.
feed
browse
bug database
maintainer
type
label
  • Neural SPARQL Machines
logo

OntoWiki

Knowledge Bases

Login

  1. Local
  2. OpenID