SAGE: Semantic Geospatial Analytics

Data integration is one of the main barriers to harnessing the full power of data in companies. Business-relevant data can be distributed across thousands of data silos in different formats in large companies. For companies driven by geospatial data (e.g., disaster management, automobile), the knowledge to be managed accounts for billions of rapidly changing facts (Big Data). Developing dedicated solutions for managing such large amounts of geospatial data is of central importance to improve the efficiency and effectiveness of data delivery for business-critical applications. However, dealing with geospatial data demands specific solutions for dealing with their intrinsic complexity (up to 5 dimensions) and the rapid changes in the data.

SAGE addresses exactly this challenge by aiming to develop dedicated algorithms for the management of big geospatial data. We will develop time-efficient storage and querying strategies for geospatial data by extending the GeoSPARQL standard so as to deal with continuous queries. A time-efficient knowledge extraction framework dedicated to recognizing geospatial entities will also be developed. In addition, we will focus on developing scalable link discovery approaches for streams of RDF data that will interplay with the storage solution while running on distributed solutions such as FLINK.

SAGE’s main result will be a set of interoperable solutions that implement time-efficient geospatial analytics that can be integrated into a high-performance solutions. These procedures will enable the fast deployment of SAGE-driven solutions such as triple store geospatial benchmarking, geographic based marketing, disaster management and the continuous delivery of big interlinked geospatial data. Using SAGE in data-driven companies promises to increase the reuse of company internal knowledge, the productivity of employees, the reduction of parallel development and a better use of company-internal resources.

Project Team

Publications

by (Editors: ) [BibTex of ]

News

DBpedia @ SEMANTiCS 2017 ( 2017-09-04T15:25:14+02:00 by Sandra Bartsch)

2017-09-04T15:25:14+02:00 by Sandra Bartsch

We are happy to invite you to the 10th DBpedia Community Meeting which will be held in Amsterdam. During the SEMANTiCS 2017, Sep 11-14, the DBpedia Community will get together on the 14th of September for the DBpdia Day. Read more about "DBpedia @ SEMANTiCS 2017"

PRESS RELEASE: Amsterdam​ ​-​ ​this​ ​year’s​ ​hotspot​ ​​on Linked​ ​Data​ ​Strategies​ ​&​ ​Practices ( 2017-09-04T11:58:06+02:00 by Sandra Bartsch)

2017-09-04T11:58:06+02:00 by Sandra Bartsch

September 11-14, 2017 international experts from science and industry demonstrate the business value of smart data services at SEMANTiCS 2017 Experts from science and industry meet at Europe’s biggest Linked Data and Semantic Web event to present and discuss latest … Continue reading → Read more about "PRESS RELEASE: Amsterdam​ ​-​ ​this​ ​year’s​ ​hotspot​ ​​on Linked​ ​Data​ ​Strategies​ ​&​ ​Practices"

AKSW Colloquium, 01.09.2017, IDOL: Comprehensive & Complete LOD Insights ( 2017-08-28T17:24:03+02:00 Gustavo Publio)

2017-08-28T17:24:03+02:00 Gustavo Publio

At the AKSW Colloquium on Friday 1st of September, at 10:40 AM there will be a paper presentation by Gustavo Publio. Read more about "AKSW Colloquium, 01.09.2017, IDOL: Comprehensive & Complete LOD Insights"

AKSW at ISWC2017 ( 2017-07-30T05:57:57+02:00 Muhammad Saleem)

2017-07-30T05:57:57+02:00 Muhammad Saleem

We are very pleased to announce that AKSW will be presenting 2 papers at ISWC 2017, which will be held on 21-24 October in Vienna, Austria. The demo and workshops papers have to be announced. Read more about "AKSW at ISWC2017"

AKSW Colloquium, 07.07.2017, Two paper presentations concerning Link Discovery and Knowledge Base Reasoning ( 2017-07-06T21:24:36+02:00 by Daniel Obraczka)

2017-07-06T21:24:36+02:00 by Daniel Obraczka

At the AKSW Colloquium on Friday 7th of July, at 10:40 AM there will be two paper presentations concerning genetic algorithms to learn linkage rules, and differentiable learning of logical rules for knowledge base reasoning. Read more about "AKSW Colloquium, 07.07.2017, Two paper presentations concerning Link Discovery and Knowledge Base Reasoning"