CSVImport: Representing multi-dimensional statistical data as RDF using the RDF Data Cube Vocabulary

  • screenshot

This project is about the representation of multi-dimensional statistical data as RDF using the RDF Data Cube vocabulary by importing spreadsheets into the OntoWiki plugin.

Homepage Issues Wiki

Statistical data on the web is often published as Excel sheets. Although they have the advantage of being easily readable by humans, they cannot be queried efficiently. Also it is difficult to integrate with other datasets, which may be in different formats. Our approach is to convert the data into a single data model – RDF. But in these datasets, a single statistical value is described in several dimensions. Thus a simple row-based transformation is not possible. Therefore, we use The RDF Data Cube vocabulary for the conversion as it is designed particularly to represent multidimensional statistical data using RDF. Transforming CSV to RDF in a fully automated way is not feasible as there may be dimensions encoded in the heading or label of a sheet. Therefore, we introduce a semi-automated approach as a plugin in OntoWiki.

Project Team

Former Members

News

SML-Bench 0.2 Released ( 2017-05-11T13:01:45+02:00 by Patrick Westphal)

2017-05-11T13:01:45+02:00 by Patrick Westphal

Dear all, we are happy to announce the 0.2 release of SML-Bench, our Structured Machine Learning benchmark framework. SML-Bench provides full benchmarking scenarios for inductive supervised machine learning covering different knowledge representation languages like OWL and Prolog. Read more about "SML-Bench 0.2 Released"

AKSW Colloquium, 08.05.2017, Scalable RDF Graph Pattern Matching ( 2017-05-08T09:42:49+02:00 by Lorenz Bühmann)

2017-05-08T09:42:49+02:00 by Lorenz Bühmann

At the AKSW Colloquium, on Monday 8th of May 2017, 3 PM, Lorenz Bühmann will discuss a paper titled “Type-based Semantic Optimization for Scalable RDF Graph Pattern Matching” of Kim et al. Read more about "AKSW Colloquium, 08.05.2017, Scalable RDF Graph Pattern Matching"

ESWC 2017 accepted two Demo Papers by AKSW members ( 2017-04-19T10:19:43+02:00 Christopher Schulz)

2017-04-19T10:19:43+02:00 Christopher Schulz

Hello Community! The 14th ESWC, which takes place from May 28th to June 1st 2017 in Portoroz, Slovenia, accepted two demos to be presented at the conference. Read more about them in the following:                                                                         1. Read more about "ESWC 2017 accepted two Demo Papers by AKSW members"

AKSW Colloquium, 10.04.2017, GeoSPARQL on geospatial databases ( 2017-04-07T10:43:55+02:00 by Dr. Matthias Wauer)

2017-04-07T10:43:55+02:00 by Dr. Matthias Wauer

At the AKSW Colloquium, on Monday 10th of April 2017, 3 PM, Matthias Wauer will discuss a paper titled “Ontop of Geospatial Databases“. Read more about "AKSW Colloquium, 10.04.2017, GeoSPARQL on geospatial databases"

AKSW Colloquium, 03.04.2017, RDF Rule Mining ( 2017-03-31T13:39:28+02:00 TommasoSoru)

2017-03-31T13:39:28+02:00 TommasoSoru

At the AKSW Colloquium, on Monday 3rd of April 2017, 3 PM, Tommaso Soru will present the state of his ongoing research titled “Efficient Rule Mining on RDF Data”, where he will introduce Horn Concerto, a novel scalable SPARQL-based approach … Continue reading → Read more about "AKSW Colloquium, 03.04.2017, RDF Rule Mining"