Keynote

Wir freuen uns am diesjährigen LSWT Hans Uszkoreit begrüßen zu dürfen.

23.09. Hans Uszkoreit - Big Data and Text Analytics

Table of Contents

    Abstract - Deutsch

    Das Gebiet der Textanalytik wird mit einer rapide anwachsenden Menge an Texten konfrontiert. In seinem Vortrag argumentiert Hans Uszkoreit, dass Big Data im Bereich Sprachverarbeitung nicht nur als eine große Herausforderung aufzufassen ist, sondern als Chance, im großen Maße Wissen in Form von 'Smart Data' zu extrahieren. Unter den vielseitigen Verwendungszwecken von Smart Data finden sich neue Anwendungen der Wissensextraktion aber auch Verbesserungen von domänenspezifischen Sprachmodellen. Es gehört zu den Herausforderungen unserer Zeit, adäquat mit unserer Hinterlassenschaft umzugehen: der unüberschaubaren Masse an Text im World Wide Web. Durch die Kombination von skalierbaren statistischen Modellen mit intelligenten regelbasierten Systemen eröffnet sich die vielversprechende Perspektive, einen fein-granularen, vielseitig einsetzbaren, translingualen "Wissensgraphen" zu produzieren, der ein weites Spektrum an Anwendungen bedient. Hans Uszkoreit wird bestehende neue Anwendungen vorstellen und mit einem Ausblick auf die Möglichkeiten schließen, die sich durch Big "Smart" Data ergeben. Invited talk: Big Data and Text Analytics

    Abstract - English

    Text analytics is faced with rapidly increasing volumes of language data. In his talk, Hans Uszkoreit will show that big language data are not only a challenge for language technology but also an opportunity for obtaining application-specific language models that can cope with the long tail of linguistic creativity. It is the challenge of our time to deal with our legacy: the immense amount of text published on the ever-growing World Wide Web. Combining scalable statistical models with "smart" rule-based approaches opens up a promising perspective on the possibility of creating a fine-granular, versatile-useful, provenance-aware, translingual knowledge graph with a range of applications. Hans Uszkoreit will explain existing applications and give an outlook on what we can expect from big "smart" data.

    Biography

    Hans Uszkoreit serves as scientific director at the German Research Center for Artificial Intelligence (DFKI) where he heads the DFKI Language Technology Lab. He has more than 30 years of experience in language technology which are documented in more than 180 international publications. Uszkoreit is Coordinator of the European Network of Excellence META-NET with 60 research centers in 34 countries and he leads several national and international research projects.

    He is a co-founder of XtraMind Technologies GmbH, Saarbruecken (now part of attensity inc.), acrolinx gmbh, Berlin and Yocoy Technologies GmbH, Berlin. From 2005-2011, he served as Chairman of the Board of Directors of the international initiative dropping knowledge.

    His current research interests are information extraction, atomatic translation and other advanced applications of language and knowledge technologies as well as computer models of human language understanding and production.

    News

    SANSA 0.7.1 (Semantic Analytics Stack) Released ( 2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann)

    2020-01-17T09:52:41+01:00 by Prof. Dr. Jens Lehmann

    We are happy to announce SANSA 0.7.1 – the seventh release of the Scalable Semantic Analytics Stack. SANSA employs distributed computing via Apache Spark and Flink in order to allow scalable machine learning, inference and querying capabilities for large knowledge graphs. Read more about "SANSA 0.7.1 (Semantic Analytics Stack) Released"

    More Complete Resultset Retrieval from Large Heterogeneous RDF Sources ( 2019-12-05T15:46:09+01:00 Andre Valdestilhas)

    2019-12-05T15:46:09+01:00 Andre Valdestilhas

    Over recent years, the Web of Data has grown significantly. Various interfaces such as LOD Stats, LOD Laundromat and SPARQL endpoints provide access to hundreds of thousands of RDF datasets, representing billions of facts. Read more about "More Complete Resultset Retrieval from Large Heterogeneous RDF Sources"

    DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released ( 2019-09-24T22:41:46+02:00 by Simon Bin)

    2019-09-24T22:41:46+02:00 by Simon Bin

    Dear all, The Smart Data Analytics group [1] and the E.T.-db-MOLE sub-group located at the InfAI Leipzig [2] is happy to announce DL-Learner 1.4. DL-Learner is a framework containing algorithms for supervised machine learning in RDF and OWL. Read more about "DL-Learner 1.4 (Supervised Structured Machine Learning Framework) Released"

    DBpedia Day @ SEMANTiCS 2019 ( 2019-08-01T10:35:05+02:00 by Sandra Bartsch)

    2019-08-01T10:35:05+02:00 by Sandra Bartsch

     We are happy to announce that SEMANTiCS 2019 will host the 14th DBpedia Community Meeting at the last day of the conference on September 12, 2019. Read more about "DBpedia Day @ SEMANTiCS 2019"

    LDK conference @ University of Leipzig ( 2019-03-22T09:21:41+01:00 by Julia Holze)

    2019-03-22T09:21:41+01:00 by Julia Holze

    With the advent of digital technologies, an ever-increasing amount of language data is now available across various application areas and industry sectors, thus making language data more and more valuable. Read more about "LDK conference @ University of Leipzig"